ECE 202-001: Circuits and Systems II

Spring 2019

Instructor: Bingsen Wang Classroom: NRB 221
Office: ERC C133 Lecture hours: MWF 8:00–8:50 am
Tel: 517/355-0911 Office hours: M,W 3:00-4:30 pm
Email: bingsen@egr.msu.edu Course website: d2l.msu.edu

Prerequisite

(ECE 201) and ((MTH 235 or concurrently) or MTH 340 or MTH 347H)

Textbook

Supplemental Textbook and Online Lectures

• G.M. Wierzba, Online lectures at https://www.youtube.com/user/202msu

Course Description

Course Objectives

At the completion of this course, each student should be able to do the following:

1. Analyze AC circuits in steady-state using phasors.
2. Understand the properties of the Laplace transform.
3. Analyze circuits using a Laplace transform.
4. Understand the properties of convolution.
5. Sketch Bode plots.
6. Understand the meaning of filtering.
7. Understand the properties of the Fourier Series.
8. Analyze circuits with mutual inductance.
9. Calculate power in sinusoidal steady-state.
10. Use SPICE simulation and MATLAB to predict the response of linear circuits.

Grading

- Points are distributed as follows:
 - Classroom Activities (10%): Class attendance and contribution.
 - Homework (20%): Homework problem sets will be distributed.
 - Midterm Exams 1,2,3 (45%): Best two out of three will be counted as 22.5% each.
 - Final Exam (25%): Final exam will be comprehensive.

- A numerical grade will be given based on the total combined score that is normalized to 100 points.

<table>
<thead>
<tr>
<th>Grade</th>
<th>Score Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.0</td>
<td>≥90</td>
</tr>
<tr>
<td>3.5</td>
<td>≥85, <90</td>
</tr>
<tr>
<td>3.0</td>
<td>≥80, <85</td>
</tr>
<tr>
<td>2.5</td>
<td>≥75, <80</td>
</tr>
<tr>
<td>2.0</td>
<td>≥70, <75</td>
</tr>
<tr>
<td>1.5</td>
<td>≥65, <70</td>
</tr>
<tr>
<td>1.0</td>
<td>≥60, <65</td>
</tr>
<tr>
<td>0.0</td>
<td><60</td>
</tr>
</tbody>
</table>

Attendance Policy

Classroom attendance is expected and required. Classroom activities, each of which is typically worth 10 points, will be graded based on accuracy and effort. It is the students responsibility to obtain notes for any missed classes. Some of the lecture notes will be uploaded to D2L while some may not be. Although the attendance will not be enforced, I strongly encourage you to attend each and every class because not all the in-class discussions will be captured by the lecture notes. The past experience indicated a strong correlation between the class attendance and the final grade.

Your two (2) lowest class activities will be dropped in computing your grade.

Homework Policy

Homework will be due one week after it is assigned. Homework is due at the start of class. Points will be deducted for late homework as follows:

- Homework received 15 minutes after the start of class: 10 points deducted
- Homework received after the end of class: 30 points deducted
- Homework received one hour or more after class: homework not accepted (score of zero entered)
Your lowest homework grade will be dropped in computing your homework grade. It is important to note that you must obtain a passing grade (60%) in Homework to pass the course.

Exam Policy

There will be NO Makeup Exams. You must obtain a passing grade (60%) in Final Exam to pass the course.

Students who do not take the final exam will receive a score of 0.0 in the class. Students who request a rescheduled ECE 202 Final Exam based on the MSU “3-exam in 1 day policy” must request rescheduling by sending an email to the instructor. The request must be made prior to the last regularly scheduled class day and approval of the request is based on confirmation of enrollment in the classes having concurrent exams, and consistency of the final exam schedules.

Your lowest 50-min midterm exam will be dropped in computing your grade.

Calculators Allowed for Exams

Unless stated otherwise, bring a calculator to the exams. You may use any scientific or graphing calculator, unless it has features described on the following “Prohibited” list.

- Pocket organizers;
- Handheld or laptop computers;
- Electronic writing pads or pen-input devices;
- Calculators built into cell phones or other electronic communication devices;
- Calculators with a typewriter keyboard (keys in QWERTY format). Calculators with letter keys not in QWERTY format are permitted.

Exam Schedule

The 50-minute exams are held in the classroom during the regularly scheduled class time. Exams are closed book and notes. There are NO formula sheets or any cheat-sheets allowed for the exams. The exam dates are (Tentative for Exams 1-3. Changes will be informed two weeks before the exams if any):

Exam 1 (Chp 8,9): Feb. 11, 2019 (Monday), 8:00am - 8:50am in NRB 221
Exam 2 (Chp 10-12): Mar. 18, 2019 (Monday), 8:00am - 8:50am in NRB 221
Exam 3 (Chp 13,15): Apr. 8, 2019 (Monday), 8:00am - 8:50am in NRB 221
Final Exam (Chp 8-13,15,16): Apr. 29, 2019 (Monday), 7:45am - 9:45am in NRB 221

No Cheating

Cheating will not be tolerated at any level, which applies to homework, exams and any class activities for this course. Any lowest score (including class activity, homework and exam) due to cheating is NOT eligible to be excluded from the final grade calculation.
Besides the obvious legal and ethical aspects, cheating lowers the quality of the University degree, angers fellow students, and diminishes the enjoyment of teaching for the instructor. Any instance, even the most minute, will have the heaviest possible repercussions. Please familiarize yourself with the policies regarding academic integrity at https://ombud.msu.edu/academic-integrity/index.html.

Help Room

Location: EB2220
Tu, Th: 3pm - 5pm, Ameer Janabi, janabiam@egr.msu.edu
F: 4pm - 5pm, Ameer Janabi
Detailed Topics

Chapter 8 Sinusoidal Steady-State Response

5.4 The Sinusoidal Waveform
 Cycle, Period, Frequency, Amplitude, Phase Angle

8.1 Sinusoids and Phasors
 Vector Representation of Sinusoids, Eulers Formula, Complex Numbers, Rectangular and Polar Form, Phasor Transform, Inverse Phasor Transform, Addition-Subtraction-Multiplication-Division of Complex Numbers

8.2 Phasor Circuit Analysis
 Kirchhoffs Current Law, Kirchhoffs Voltage Law, Resistance in Phasor Form, Capacitance in Phasor Form, Inductance in Phasor Form, Impedance, Admittance

8.3 Basic Circuit Analysis with Phasors
 Series Equivalence of Impedances, Reactance, Phasor Analysis Algorithm, Voltage Divider Rule, Parallel Equivalence of Impedances, Susceptance, Current Divider Rule, SPICE, Resonant Frequency of an Impedance, Series Resonance, Parallel Resonance

8.4 Circuit Theorems with Phasors
 Superposition, Source Transformations, Thevenin and Norton Equivalent Circuits

8.5 General Circuit Analysis with Phasors
 Node-Voltage Method, MATLAB, Mesh-Current Method

8.6 Energy and Power
 Average Power for a Resistance, Inductance and Capacitance, Root-Mean Square

Chapter 9 Laplace Transforms

9.1 Signal Waveforms and Transforms
 Definition of the Laplace Transformation, Step Function, Impulse Function, Inverse Transformation, Uniqueness Property

9.2 Basic Properties and Pairs
 Linearity, Integration Property, Ramp Function, Differentiation Property, Nth Derivative, S-Domain Translation Property, Time Domain, Translation Property, Table of Transform Pairs

9.3 Pole-Zero Diagrams
 Definition of pole and zero, Sketches, MATLAB

9.4 Inverse Laplace Transforms
 Rational Function, Partial Fraction Expansion, Residues, Complex Poles, Sum of Residues

9.5 Some Special Cases
 Improper Rational Function, Multiple Poles, MATLAB

Chapter 10 S-Domain Circuit Analysis
10.1 Transformed Circuits
 Element Constraints in the S-Domain, Sources, Connection Constraints, Examples of the Complete Response of RC and RL switching circuits

10.2 Basic Circuit Analysis in the S-Domain
 Phasors revisited

10.3 Circuit Theorems in the S-Domain
 Proportionality, Superposition, Norton Equivalent Circuits

10.4 Node-Voltage Analysis in the S-Domain
 S-Domain Node Equations by Inspection

10.5 Mesh-Current Analysis in the S-Domain
 S-Domain Mesh Equations by Inspection

Chapter 11 Network Functions

11.1 Definition of a Network Function
 Natural and Forced Response, Stability

11.2 Network Functions of One- and Two-Port Circuits
 Driving Point Impedance, Transfer Functions

11.3 Network Functions and Impulse Response
 Definition, Pspice Example of an Impulse Response

11.4 Network Functions and the Step Response
 Definition

11.6 Impulse Response and Convolution
 Definition of Convolution, Causal and Non-Causal Signals, Equivalence of S-Domain and t-Domain Convolution, Graphical Approach

11.7 Network Function Design
 Synthesis, First Foster RC Forms, NAB Equalizer Design, Magnitude Scaling

Chapter 12 Frequency Response

12.1 Frequency Response Descriptors
 Types of Filters, Pass Bands, Stop Bands

12.5 Bode Diagrams
 Product of Terms, Decibel, First-Order Inspections Forms, Making Log Paper and Reading Points

12.2 First Order Circuit Frequency Response

12.3 Second-Order Circuit Frequency Response
Chapter 13 Fourier Series

13.2 Fourier Coefficients
Fourier Series, Sawtooth Example, Fundamental Frequency, Harmonics, Alternative Form of the Fourier Series

13.3 Waveform Synthesis
Even Symmetry, Odd Symmetry, Half-Wave Symmetry

Chapter 15 Mutual Inductance

15.1 Coupled Inductors
Magnetic Flux, V-I Characteristics

15.2 The Dot Convention
Examples of Coupled Coils

15.3 Energy Analysis
Coupling Coefficient

15.4 The Ideal Transformer
Perfect Coupling, Equivalent Input Resistance

15.5 Transformers in Sinusoidal Steady-State
Model

Chapter 16 Power in Sinusoidal Steady-State

16.1 Average and Reactive Power

16.2 Complex Power
Apparent Power, Power Factor, Reactive Power Factor, Power Factor Angle, Power Triangle, Complex Power and Load Impedance

16.3 AC Power Analysis

16.4 Load-Flow Analysis
Power Factor Correction, Step-up and Step-Down Transformers, Maximum Real Power Transfer Theorem

16.5 Three-Phase Circuits
Three-Phase Voltage Sources, Phase Sequence, Line / Phase Relationships

16.6 Three-Phase AC Power Analysis
Y-Connected Source and Y-Connected Load, Y-Connected Source and Δ-Connected Load