Most companies working on autonomous vehicles consider lidar sensors mandatory for vehicles to safely navigate alone and distinguish objects such as pedestrians and cyclists. But the best existing sensors are bulky, extremely expensive, and in short supply as demand surges (see “Self-Driving Cars’ Spinning Laser Problem”). Alphabet and Uber have both said they were forced to invent their own, better-performing sensors from scratch to make self-driving vehicles viable. Luminar hopes to serve automakers that would rather not go to that effort.

Daniel Morris, an associate professor at MicLuminarhigan State University, says that should be attractive to automakers if Luminar can deliver. “A lot of current lidars don’t have good enough long-distance range,” he says. “For highway driving you really want to see far.” At 70 miles an hour, an extra 100 meters of vision would give a car’s software an additional three seconds to take action when it sees an obstacle.  

One reason Luminar’s sensor offers a longer range is that it uses a longer wavelength of light than sensors on vehicles today, allowing operation at higher power without breaching eye safety rules. The sensor can also zoom in on a particular object by directing more laser beams in that direction, using a system of small, moving mirrors that actively steer its laser. In contrast, sensors from Velodyne and others use spinning mirrors that send out beams in a fixed pattern.